Собрали в одном месте самые важные ссылки
читайте авторский блог
Мы продолжаем публикацию адаптации руководства DataCamp по использованию Python для разработки финансовых приложений. Первая часть материала рассказывала об устройстве финансовых рынков, акциях и торговых стратегиях, данных временных рядов, а также о том, что понадобится для начала разработки.
Теперь, когда вы уже больше знаете про требования к данным, разобрались с понятием временных рядов и познакомились с pandas, пришло время глубже погрузиться в тему финансового анализа, который необходим для создания торговой стратегии.
Jupyter notebook этого руководства можно скачать здесь.
Преобразование ISO-даты из строки в объект datetime.datetime (или datetime.date), наверное, одна из самых распространенных и постоянных задач в web-разработке на Python. Количество способов сделать это просто поражает воображение
Определение понятия "связанный список", как создать его и как с ним работать.
Учимся решать задачи по принципу "разделяй и властвуй"
Если Вы только начинаете свой путь знакомства с возможностями Python, ваши познания еще имеют начальный уровень — этот материал для Вас. В статье мы опишем, как можно извлекать информацию из данных, представленных в Excel файлах, работать с ними используя базовый функционал библиотек. В первой части статьи мы расскажем про установку необходимых библиотек и настройку среды. Во второй части — предоставим обзор библиотек, которые могут быть использованы для загрузки и записи таблиц в файлы с помощью Python и расскажем как работать с такими библиотеками как pandas, openpyxl, xlrd, xlutils, pyexcel.
Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.