Собрали в одном месте самые важные ссылки
читайте нас в Twitter
В гостях у Moscow Python Podcast Фёдор Борщёв. Поговорили с Фёдором о текущем состоянии Django, асинхронности в нём и о его будущем.
Недавно я сидел в баре с другом зашел разговор о том, в каких задачах в принципе может быть эффективен нейросетевой подход, а где они совершенно излишни. Один класс примеров, где нейросети часто наголову превосходят классические алгоритмы - обработка изображений. Точность решения задачи распознования объектов на изображении может даже превосходить человеческое восприятие. Кроме того, интересны и задачи переноса стиля, генерации реалистичных изображений, superresolution итд. Нейросети могут быть очень эффективны также в задачах типа pixtopix, когда происходит генерация одного изображения из другого. Тогда у меня и возникла идея попробовать применить данные алгоритмы для преобразования 2d фильмов в 3d.
Технологии в области машинного обучения за последний год развиваются с потрясающей скоростью. Всё больше компаний делятся своими наработками, тем самым открывая новые возможности для создания умных цифровых помощников.
В рамках данной статьи я хочу поделиться своим опытом реализации голосового ассистента и предложить вам несколько идей для того, чтобы сделать его ещё умнее и полезнее.
Современный этап развития технологий, в том числе и вычислительной техники, показывает нам рост объёмов данных и потребностей во все более мощных вычислителях. В основе развития центральных процессоров всегда лежала технология увеличения числа транзисторов на кристалле микропроцессора. Известный закон Мура гласит: «при сохранении этой тенденции мощность вычислительных устройств за относительно короткий промежуток времени (24 месяца) может вырасти экспоненциально»
Sanic– это очень похожий на Flask открытый веб-сервер и веб-фреймворк на Python с более чем 10К звездами, который быстро развивается. Он позволяет использовать синтаксис async/await, который был добавлен в Python 3.5, помогая делать ваш код неблокирующим и быстрым.
В стандартной библиотеке Python есть замечательный пакет для логирования — logging. В сети бытует мнение, что он сложный и настраивать его сплошная боль. В этой статье я попробую убедить вас в обратном. Мы разберём что из себя представляет этот пакет, изучим основные компоненты и закрепим материал практическим примером.
Модуль itertools стандартизирует основной набор быстрых эффективных по памяти инструментов, которые полезны сами по себе или в связке с другими инструментами. Вместе они формируют «алгебру итераторов», которая позволяет лаконично и эффективно создавать специализированные инструменты на чистом Python.
Модуль functools предоставляет инструменты для работы с функциями и другими вызываемыми объектами, чтобы адаптировать или расширить их для других целей, не переписывая полностью.