Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Содержание данной статьи изначально было опубликовано в последней книге автора статьи "Упрощение машинного обучения с PyCaret". Вы можете кликнуть здесь, чтобы ознакомиться с ней подробнее.
В гостях у Moscow Python Podcast Python руководитель разработки компании МЕДСИ Digital Николай Фоминых. Обсудили с Николаем, что такое DDD, зачем оно нужно и как применяют в МЕДСИ.
Для приготовления CRUD нам понадобится 1C, Python и ... PostgreSQL. Сначала нужно включить REST OData в 1C.
Думаю, вы знакомы с графиками сравнения точности архитектур. Их применяют в задачах по классификации изображений на ImageNet. В каждом сравнении которые я мог встретить ранее в Интернете, как правило это было сравнение небольшого количества архитектур нейросетей, произведенными разными командами, и возможно в разных условиях.Кроме того в последнее время я наблюдаю изменения: появилось большое количество архитектур. Однако их сравнений с ранее созданными архитектурами я не встречал, либо оно было не столь масштабным.Мне захотелось столкнуть большое количество существующих архитектур для решения одной задачи, при это объективно посмотреть как поведут себя новые архитектуры типа Трансформер, так и ранее созданные архитектуры.
В статье пойдет речь о том как вывести аудио, проигрываемое на raspberry pi на несколько источников (проигрывателей) одновременно. В частности, аудио будет параллельно транслироваться по hdmi, на audio jack, bluetooth устройство (устройства). Вопрос прикладной, но в интернете не удалось найти готовое решение, поэтому родился данный короткий пост.
Чтобы понять хороший код или плохой, недостаточно на него посмотреть, надо еще знать и контекст, в котором он написан. Давайте попробуем решить одну простую задачу тремя способами и найдем в каком контексте каждое решение будет хорошим или плохим. Задача простая, но вполне жизненная: взять данные, поменять, сохранить.
В обновлении Bot API 6.0телеграм-боты получили много новых функций. Из них для разработчиков самая примечательная - Telegram Web Apps (Веб-приложения внутри телеграм). С этим нововведением разработчики могут подключать к своим ботам web-приложения, которые открываются в дополнительном окне, что сильно расширяет инструментарий, а, следовательно и функционал ботов в телеграм.
Не одним One-Hot единым...В данной статье разберемся с кодированием категориальных данных. В профессиональной среде нередко о существовании чего-то кроме OH или Label Encoder не догадываются не только рядовые Junior DS, но и даже Middle, а иногда и Senior. Исправить данную несправедливость и призвана данная статья.
Table of Contents Achieving Optimal Speed and Accuracy in Object Detection (YOLOv4)
XGBoost — это оптимизированная библиотека, реализующая алгоритм градиентного бустинга. Эта библиотека спроектирована с прицелом на высокую продуктивность и гибкость, в ней используется параллельная работа с древовидными структурами, что позволяет быстро и эффективно решать различные задачи из сфер Data Science и Machine Learning. В предыдущем материале мы исследовали три подхода к ускорению обучения XGBoost-моделей.
Математический анализ знает множество замечательных функций со своими удивительными свойствами и применениями. Сегодня я бы хотел рассказать читателю об одной из таких - W-функции Ламберта.
Ранее я рассказал, как я создал Телеграм-бота, который пишет хокку и подбирает пикчу в тему. В этой статье расскажу, как я научился фильтровать изображения по размеру и про работу с vk_api. Прошлая статья вышла немного скомканной, поэтому в этой статье заново рассмотрим весь принцип работы.
Фреймворк XGBoost (Extreme Gradient Boosting, экстремальный градиентный бустинг) — это эффективная опенсорсная реализация алгоритма градиентного бустинга. Этот фреймворк отличается высокой скоростью работы, а модели, построенные на его основе, обладают хорошей производительностью. Поэтому он пользуется популярностью при решении задач классификации и регрессии с использованием табличных наборов данных. Но процесс обучения XGBoost-моделей может занять много времени.
В статье описывается проблема разрастания базы данных из-за устервших записей сессий и индекса таблицы сессий в Django. А также описывается, как данная проблема была решена.
До меня было написано 4 статьи по экспорту статей с хабра в FB2 и pdf: Экспорт избранного Хабра в FB2 Экспорт избранного Хабра в FB2 — скоростная PHP-версия Экспорт Хабра в FB2 Экспорт Избранного на Хабре в PDF Я же хотел получить исходники своих статей.
Большая боль разработчиков, которые приходят на новый проект — для развертывания сервиса локально нужно пообщаться минимум с десятком людей, не говоря уже про интеграцию с CI/CD-сервером. В один момент мы решили реализовать это удобнее, заодно сократив время онбординга новых сотрудников.
Развитие микроэлектроники, ИТ технологий и широкого спектра программных продуктов открыло новые возможности по контролю всего. Датчики, камеры, цифровые следы… Магнитофон в чемодане уже неактуален.
Когда выходит очередная версия Python, все внимание достается новым фичам языка: моржовому оператору, слиянию словарей, паттерн-матчингу. Еще много пишут об изменениях в асинхронной работе (модуль asyncio) и типизации (модуль typing) — эти модули на виду и бурно развиваются.
Чтобы уверенно пересечь незнакомую местность, можно или двигаться быстрее, или подыскивать удобную дорожку. Другими словами, слишком пристальное внимание к скорости как таковой может вас притормозить. То же касается и разработки программного обеспечения.