Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Во время изучения различных алгоритмов машинного обучения я наткнулся на ландшафт потерь нейронных сетей с их горными территориями, хребтами и долинами. Эти ландшафты потерь сильно отличались от выпуклых и гладких ландшафтов потерь, с которыми я столкнулся при использовании линейной и логистической регрессий. Здесь мы создадим ландшафты потерь нейронных сетей и анимированного градиентного спуска с помощью датасета MNIST.
В этой статье я хочу продемонстрировать R Markdown — удобную надстройку для программирования вашего проекта как на R, так и на Python, позволяющую программировать некоторые элементы вашего проекта на двух языках и управлять объектами, созданными на одном языке, с помощью другого языка.
Алгоритмы по детекции лиц плотно вошли в нашу жизнь, хотя и не все это замечают. Началось всё в 2015 году со сферы развлечений. Shapchat купил стартап Looksery, в котором разрабатывали AR-фильтры. Приложение распознавало лицо человека на фотографии и накладывало на него весёлые рожицы. Чуть позже, в начале 2016 года, Facebook купил белорусский стартап MSQRD и запустил маски в Facebook Stories. Но это можно считать только обкаткой таких технологий.
В этой статье можно прочитать, как используются системы идентификации, узнать про слабые места компьютерных алгоритмов, а также попробовать запустить нейронную сеть по детекции и идентификации лиц на собственном компьютере.
Ball Sort Puzzle — это популярная мобильная игра на IOS/Android. Суть её заключается в перестановке шариков до тех пор, пока в колбах не будут шарики одного цвета. При этом шарик можно перетаскивать либо в пустую колбу, либо на такой же шарик.
Модели глубокого обучения улучшаются с увеличением количества данных и параметров. Даже с последней моделью GPT-3 от Open AI, которая использует 175 миллиардов параметров, нам ещё предстоит увидеть плато роста количества параметров.
В данной статье я покажу и расскажу, как можно сгенерировать аватарки как на Github.
Преобладающая задача в любом анализе данных — сравнение нескольких наборов чего-либо. Это могут быть списки IP-адресов для каждой целевой страницы вашего сайта, клиенты, которые купили определённые товары в вашем магазине, несколько ответов из опроса и многое другое.
В этой статье воспользуемся Python для изучения способов визуализации перекрытий и пересечений множеств, наших возможностей, а также их преимуществ и недостатков.
Пару дней назад мы подводили ИИ итоги 2020-го года в мире машинного обучения. 2021-й год только начался, но мы определенно видим одну из важнейших работ в области ИИ текущего года.
Итак, исследователи в области искусственного интеллекта из openai создали нейронную сеть под названием DALL · E, которая генерирует изображения из текстового описания на естественном языке.
Одной из причин высокой популярности языка программирования Python является разнообразие библиотек нацеленных на обработку естественного языка (NLP). Сегодня мы рассмотрим одну из них под названием Dostoevsky.
В этом руководстве рассмотрим установку и использование простой библиотеки для проверки версий внешних зависимостей.
Немного веселья с компьютерным зрением и CNN с маленькой базой данных.