Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Думаю, что каждому пользователю UNIX-подобных систем знакома утилита neofetch. Эта маленькая программа позволяет вывести информацию о системе и аппаратной части компьютера в удобном формате. Так давайте же напишем свою версию на python!
В этой статье я хотел бы поделиться опытом решения маленькой проблемы с большим количеством адресов. Если вы когда-либо работали с API геокодирования или пользовались онлайн инструментами, то думаю вы разделяете мою боль ожидания результата в течение нескольких часов, а то и больше.
Речь идет не о сложных алгоритмах оптимизации, а об использовании сервиса пакетного геокодирования, который принимает на вход список адресов и возвращает файл с результатами. Тем самым можно сократить время обработки с нескольких часов до минут.
Из цикла «Как бы мне?… в Питоне»
Когда Люк работал с Flake8 и одновременно присматривался к Pylint, у него сложилось впечатление, что 95% ошибок, выдаваемых Pylint, были ложными. У других разработчиков был иной опыт взаимодействия с этими анализаторами, поэтому Люк решил детально разобраться в ситуации и изучить его работу на 11 тыс. строк своего кода. Кроме того, он оценил пользу от Pylint, рассматривая его как дополнение к Flake8.
Из цикла «Как бы мне?… в Питоне»
Привет, меня зовут Александр Васин, я бэкенд-разработчик в Едадиле. Идея этого материала началась с того, что я хотел разобрать вступительное задание (Я.Диск) в Школу бэкенд-разработки Яндекса. Я начал описывать все тонкости выбора тех или иных технологий, методику тестирования… Получался совсем не разбор, а очень подробный гайд по тому, как писать бэкенды на Python. От первоначальной идеи остались только требования к сервису, на примере которых удобно разбирать инструменты и технологии. В итоге я очнулся на сотне тысяч символов. Ровно столько потребовалось, чтобы рассмотреть всё в мельчайших подробностях. Итак, программа на следующие 100 килобайт: как строить бэкенд сервиса, начиная от выбора инструментов и заканчивая деплоем.
Заметка о переопределение пользовательской модели в Django, а также описание некоторых нюансов, которые нужно учитывать при разработке третьесторонних библиотек для Django, которые используют пользовательскую модель.
Небольшая заметка о том, как поправить queryset форме администрирования admin.ModelAdmin или UserAdmin . Собственно разницы никакой, поскольку форма UserAdmin наследована от admin.ModelAdmin . Но тем не менее покажу на примере UserAdmin
Бывают моменты, когда тебе хочется максимально погрузиться в язык и понять все его тонкости. В случае Python один из лучших способов это сделать — читать на официальном сайте документацию и PEP-ы. В своё время я этого не делал, поскольку не мог понять многих «технических» моментов, а вариантов русского перевода не было. Сейчас же я решил сам перевести PEP-257, где рассказывается о правильном документировании кода, ведь наверняка это поможет новичкам лучше понять истинный «пайтоновский» подход к написанию кода. Я переводил примеры кода на русский язык, но только для того, чтобы лучше донести смысл. В реальном программировании старайтесь писать документационные строки на английском. Также говорю сразу, что как синоним термина «docstring» я использовал слова: «документация» и «документационные строки». Что же, перейдём к самому переводу.
Как подобрать лучшую экипировку в любимой игре? Конечно, можно банально перебрать все её возможные сочетания (например, для разбойника из World of Warcraft) и найти наилучшее. Без всякой магии и машинного обучения. Но можно ли добиться этого результата не «в лоб», а при помощи генетических алгоритмов, не примеряя каждую комбинацию? Интересно узнать, как размножаются и эволюционируют разбойники? Поехали.