Собрали в одном месте самые важные ссылки
консультируем про IT, Python
История голодного студента с пытливым умом Не знаю, как вы, а я обожаю пиццу. Особенно если это особые чесночные пицца-палочки Papa John’s. Поэтому я был в восторге, когда после заказа еды навынос получил от них следующее письмо: Papa John’s (с) Заголовок письма с опросом Бесплатная еда! Мне определённо нужно было пройти этот опрос
В сегодняшнем материале рассказывается про Neuropod, движок вывода глубокого обучения с открытым исходным кодом от Uber ATG. Это слой абстракции над фреймворками глубокого обучения, решающий проблему быстрой замены написанных на разных фреймворках моделей и проблему адаптации модели для производственных сред, помогающий построить единый и оптимизированный конвейер входных данных. Подробности, как обычно, под катом.
В Python есть множество возможностей и языковых конструкций. Какие-то мы используем каждый день, а о некоторых даже опытные программисты узнают с удивлением после нескольких лет работы с языком (привет, Ellipsis!). Совсем недавно вышел Python 3.9, но в этой статье я расскажу о функциональности, представленной еще в версии 3.7. На мой взгляд, она совершенно незаслуженно обделена пристальным вниманием. Речь, конечно же, о contextvars.
Как я учил агента собирать клетку 2048 в игре “2048”
Интересно, как ведут себя потоки, когда борются за GIL, или немного информации отсюда только для Python3.
Сразу оговорюсь, что использую Ubuntu 16.04 c ядром 4.15.0-115-generic, на машине стоит 4-х ядерный процессор Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz с 4 GB RAM.
Данная статья является продолжением вот этой статьи. В ней мы рассмотрели создание и настройку yandex cloud functions телеграм бота. А сегодня мы рассмотрим подключение телеграм бота к базе данных и сохранение какой-либо информации о пользователе, с которым общается бот.
В качестве базы данных мы будем использовать Yandex Cloud Database.
В посте есть результаты экспериментов с различными биологическими и физическими закономерностями, в частности песочный сплайн, дифференциальная решетка, песчаные творения и песочные знаки.
Недавно я написал ответ о жизни проекта в Докерах и отладке кода вне него, где мельком упомянул о том, что можно сделать свою систему конфигурирования, чтобы сервис и в Кубере хорошо работал, подтягивал секреты, и локально удобно запускался, в том числе вообще вне Докера. Ничего сложного, но описанный "рецепт" может кому-то пригодится :) Код на Питоне, но логика к языку не привязана.
Python-разработчиков можно поделить на три группы. В самой большой — специалисты, чьи зарплатные ожидания ниже предложений компаний. Во второй — те, кто хочет получать больше, чем им готовы предложить. И совсем мало разработчиков, чьи ожидания совпадают с предложениями. Деление не зависит от уровня разработчика, скорее от города потому что в каждой из 3 групп есть джуны, мидлы и сеньоры.
Начнем с идеи. Допустим, вы, как настоящий аудитор, хотите провести экспертизу отчетности заводчика собак, используя в том числе и сторонние ресурсы. Для этого вы пробуете получить систематизированную информацию о щенках заводчика, зная, к примеру, лишь название их пород, и составить из нее таблицу в Pandas, пригодную к дальнейшей обработке любого характера (всевозможные статистические изыскания, агрегация и так далее). Но ваши данные хранятся в глубине некоторого абстрактного вебсайта, откуда вы можете вынуть их в только виде архива, где сложены документы нескольких форматов, внутри которых есть текст, картинки, таблицы. А если пород щенков много, а на каждую из них есть по десятку pdf-файлов с таблицами, откуда вам нужна не вся информация, а также, например, нужны названия этих таблиц или сноски? Добавим в наш проект несколько функций, решающих следующие задачи: выгрузка и распаковка архива с данными, поиск и обработка pdf файлов из архива, анализ полученных данных.
Каждый, кому хоть раз приходилось строить диаграммы в draw.io или Google Diagrams, помнит всю утомительность и медлительность этого процесса. Сегодня делимся с вами материалом, в котором шаг за шагом показывается, как можно строить красивые архитектурные диаграммы с помощью Python. Главное удобство — встроенные узлы для обозначения сервисов и языков программирования. Только код и никакой мыши.