Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Поводом для написания данной публикации послужил вебинар, который я посмотрел на Youtube. Он был посвящен когортному анализу продаж. Автор использовал для работы с данными платформу Power BI Desktop. Ссылку на указанное видео приводить не буду, чтобы эта статья не была расценена как реклама, но по ходу повествования постараюсь делать спойлеры к первоисточнику, чтобы лучше объяснять логику собственного решения. Данный вебинар натолкнул меня на идею, что интересно было бы повторить возможности формул DAХ функциями библиотеки Pandas.
Эта статья написана по мотивам решения задания на недавно прошедшем онлайн-марафоне DevNet от Cisco. Участникам предлагалось автоматизировать анализ и визуализацию произвольной сетевой топологии и, опционально, происходящих в ней изменений.
Задача является не самой тривиальной, и в блогосфере встречается довольно мало статей на эту тему. Ниже представляю разбор собственной реализации, а также описание используемых инструментов и подходов.
Была задача поднять свой Debian сервер на Nginx для проектов Django 3.х. Перерыв кучу информации в интернете, удалось это сделать соединив рекомендации с нескольких разных сайтов. Если вам интересно почитать, как настроить свой первый сервер для Django-проекта, то — добро пожаловать.
Наверняка многие владельцы сетевых устройств Apple, которые читают эту статью, таких как TimeCapsule или Airport Extreme, рано или поздно задумывались почему у купленных в России устройств нет поддержки beamforming и максимальная ширина канала 40МГц? И как следствие максимальная скорость приема и передачи данных – 600 Мбит/с (вместо заявленных 1300 Мбит/с).
Я недавно проводил исследование, в рамках которого было необходимо обработать несколько сотен тысяч наборов входных данных. Для каждого набора — провести некоторые расчеты, результаты всех расчетов собрать вместе и выбрать "лучший" по некоторым критериям. По сути это bruteforce перебор. Тоже самое происходит при подборе параметров ML моделей с помощью GridSearch.
Однако, с некоторого момента размер вычислений может стать для одного компьютера великоват, даже если запускать ее в несколько процессов с помощью joblib. Или, если сказать точнее, он становится слишком долгим для нетерпеливого экспериментатора.
Агрегация является одной из самых частых операций при анализе данных. Разные технологии предлагают нам кучу способов эффективно группировать и агрегировать интересующие нас поля(столбцы, признаки). В этой статье будет рассказано про реализацию агрегации в pandas.
По своей специализации я очень мало работаю с python, но часто слышу про плюсы и мощь этого языка, в особенности когда речь заходит про работу с данными. Поэтому я проведу здесь параллель операций с T-SQL и приведу некотрые примеры кода. В качестве данных я буду использовать наверное самый популярный data set — Ирисы Фишера.
Пример архитектурного решения для создания динамических виджетов сайта на Django. Также может быть использовано и в ряде других задач.
Существует большое количество различных методик изучения иностранных языков вообще и английского в частности. Но какая бы методика ни была, учить слова все равно надо.
Для этих целей есть очень много различных тренажеров с выбором слов для изучения. Тем не менее, их возможностей иногда не хватает.
В этой статье я хочу поделиться с вами «рецептом», который позволил нам реализовать отложенные ретраи при использовании брокера сообщений RabbitMQ