Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.
Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.
Если вы data scientist, или занимаетесь машинным обучением, как я — наверняка вы пишете большую часть кода в Jupyter Notebooks. Для всех остальных поясню: Jupyter — это замечательная система, позволяющая вам сочетать исполняемый программный код и текстовые фрагменты на основе Markdown в едином документе, который можно редактировать и выполнять прямо через браузер. Такой документ называется ноутбуком (теперь вы знаете, как подарить другу ноутбук на день рождения и не сильно потратиться)
Как то вечером, придя домой с работы, я решил немного позаниматься домашним проектом. Я сделал несколько правок и сразу захотел поэкспериментировать с ними. Но до экспериментов мне пришлось заходить на VPS, пулить изменения, пересобирать контейнер и запускать его. Тут я и решил, что пора разобраться с непрерывной доставкой.
Часто ли вы видите токсичные комментарии в соцсетях? Наверное, это зависит от контента, за которым наблюдаешь. Предлагаю немного поэкспериментировать на эту тему и научить нейросеть определять хейтерские комментарии.
Итак, наша глобальная цель — определить является ли комментарий агрессивным, то есть имеем дело с бинарной классификацией. Мы напишем простую нейросеть, обучим ее на датасете комментариев из разных соцсетей, а потом сделаем простой анализ с визуализацией.
Для работы я буду использовать Google Colab. Этот сервис позволяет запускать Jupyter Notebook'и, имея доступ к GPU (NVidia Tesla K80) бесплатно, что ускорит обучение. Мне понадобится backend TensorFlow, дефолтная версия в Colab 1.15.0, поэтому просто обновим до 2.0.0.
С извлечением информации о песне из iTunes
Альтернативный базирующийся на сетке дизайн админ панели Django. Изменения описаны по ссылке https://allmychanges.com/p/python/django-grappelli/#2.13.2. Скачать можно по ссылке: https://pypi.python.org/pypi/django-grappelli/
Я расскажу про разные языки на бэкенде и о том, что, вообще, там происходит в их уютных облаках. Я расскажу про несколько популярных языков для создания формочек, несколько языков из вторых рядов для перекладывания json, ну и покажу несколько языков из глубокого underground: crystal, pony, v. Будет весело, холиварно, субъективно!
Python приложения могут работать с самыми различными БД (Postgres, SQLite, MariaDB и др.) и перед разработчиками приложений возникает задача реализовать возможность легко и безопасно изменять состояние БД: как структуры так и самих данных, от версии к версии приложения.
В докладе я поделюсь опытом использования хорошо зарекомендовавшего себя инструмента для управления миграциями - alembic.
Расскажу, почему стоит остановить свой выбор именно на нем, как с его помощью подготовить миграции, как их запускать (автоматически или вручную), зачем тестировать, какие проблемы могут выявить тесты и как эти тесты реализовать.
Мы рассмотрим проблемы необратимых изменений в миграциях, а также несколько лайфхаков alembic, которые сделают работу с миграциями легкой и приятной
Технологии Serverless несколько лет, и с каждым годом её популярность растет. Для высоконагруженных систем это простой способ бесконечного масштабирования, а для простых сайд-проектов - это отличная возможность бесплатного хостинга. Принцип в том, что вы деплоите не вебсервер, а функции, и платите только за время выполнения этих функций (обычно это миллисекунды).
В докладе мы рассмотрим, как устроены эти функции, какие есть инструменты для их создания - и зачем это обычному питонисту. Также мы увидим, как деплоить уже готовые приложения на Django и Flask в serverless-режиме