Собрали в одном месте самые важные ссылки
читайте авторский блог
При изучении технологий Deep Learning я столкнулся с нехваткой относительно простых примеров, на которых можно относительно легко потренироваться и двигаться дальше.
В данном примере мы построим рекуррентную нейронную сеть, которая получив на вход текст романа Толстого «Анна Каренина», будет генерировать свой текст, чем-то напоминающий оригинал, предсказывая, какой должен быть следующий символ.
Структуру изложения я старался делать такой, чтобы можно было повторить все шаги новичку, даже не понимая в деталях, что именно происходит внутри этой сети. Профессионалы Deep Learning скорее всего не найдут тут ничего интересного, а тех, кто только изучает эти технологии, прошу под кат.
Доброго всем! Мы тут потихоньку начали исследовать новое совсем для нас направление для обучения — блокчейны и нашли то, что оказалось интересным в рамках нашего курса по Python, в том числе. Чем, собственно, и хотим поделиться с вами.
Мне часто приходится делать небольшие сервера на tornado. В каких-то проектах нужна поддержка работы с redis, в каких-то нет. В других надо рендерить ReactJS. И во всех нужно логирование. Для начала я поднял локальный pypi репозитарий, собрал свои наработки в питоний пакет и радовался жизни. Достаточно было установить пакет, импортировать из него классы, отнаследоваться и радостно пилить код дальше.
Я использовал шум Перлина для создания эффекта тумана и главного экрана в Under Construction. Я твитнул о моих усилиях по оптимизации алгоритма, и несколько людей ответили, что они не понимают, как работает шум Перлина и что это на самом деле такое.
Признаюсь, что я (немного) понимаю шум Перлина прежде всего потому, что я реализовывал его ранее, и несколько дней ушло на погружение в неуклюжие объяснения полдюжины разработчиков, более заинтересованных в показе собственных демок, нежели в реальном объяснении. Несколько полезных ресурсов, которые я нашел, часто содержали ошибки и не давали мне интуитивного чувства понимания, как и почему оно все-таки работает.
О том как настроить sentry + django
В октябре команда облачного сервиса Okdesk приняла участие в пензенском хакатоне, в рамках которого мы разработали "коробочного" Telegram-бота для Okdesk. Бот позволит клиентам сервисных компаний отправлять заявки на обслуживание, переписываться по заявками и ставить оценки выполнению заявок не выходя из любимого мессенджера.
Python интерфейс для MongoDB. Изменения описаны по ссылке https://allmychanges.com/p/python/pymongo/#3.6.0. Скачать можно по ссылке: http://pypi.python.org/pypi/pymongo/
Здравствуйте! В связи с вопросами читателей моей публикации [1] касательно условий возбуждения автоколебаний в механической системе, я решил описать явление возникновения и поддержания автоколебаний подробно, выделив основные области возникновения и применения автоколебаний. В википедии автоколебания объясняют так [2]: Незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы. При этом частота становится почти равной резонансной.
Хочу поделиться своим опытом классификации пользователей социальной сети по их комментариям на два класса по складу ума: гуманитарный или технический. В данной статье не будут использоваться последние достижения глубокого обучения, но будет разобран завершенный проект по классификации текстов: от поиска подходящих данных до предсказаний. В конце будет представлено веб-приложение, в котором вы сможете проверить себя.