Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Когда мы слышим о сверточных нейронных сетях (CNN), мы обычно думаем о компьютерном зрении. CNN лежали в основе прорывов в классификации изображений — знаменитый AlexNet, победитель соревнования ImageNet в 2012 году, с которого начался бум интереса к этой теме. С тех пор сверточные сети достигли большого успеха в распознавании изображений, в силу того факта, что они устроены наподобие зрительной коры головного мозга — то есть умеют концентрироваться на небольшой области и выделять в ней важные особенности. Но, как оказалось, CNN хороши не только для этого, но и для задач обработки естественного языка (Natural Language Processing, NLP). Более того, в недавно вышедшей статье [1] от коллектива авторов из Intel и Carnegie-Mellon University, утверждается, что они подходят для этого даже лучше RNN, которые безраздельно властвовали областью на протяжении последних лет.
Язык программирования Python в последнее время все чаще используется для анализа данных, как в науке, так и коммерческой сфере. Этому способствует простота языка, а также большое разнообразие открытых библиотек.
В этой статье разберем простой пример исследования и классификации данных с использованием некоторых библиотек на Python. Для исследования, нам понадобится выбрать интересующий нас набор данных (DataSet). Разнообразные наборы Dataset'ы можно скачать с сайта. DataSet обычно представляет собой файл с таблицей в формате JSON или CSV. Для демонстрации возможностей исследуем простой набор данных с информацией о наблюдениях НЛО. Наша цель будет не получить исчерпывающие ответы на главный вопрос жизни, вселенной и всего такого, а показать простоту обработки достаточно большого объема данных средствами Python. Собственно, на месте НЛО могла быть любая таблица.
Лайвкодинг небольшой программы по выбору кино на вечер в рамках доклада для школьников и студентов младших курсов о том, что программировать это круто.
При разработке сервисов на django, мы столкнулись с тем, что не пользуемся большей частью пакета django-rest-framework, о чем я упоминал на Moscow Python Conf 2017. В итоге мы сделали свой небольшой пакет для простой реализации REST API в Django проектах
В современном мире есть куча нюансов, которые нужно учесть при старте вашего приложения: конфигурация, деплой, тесты, CI, удобство разработки. Расскажу про Bleeding Edge технологии, основная цель которых сделать ваш проект безопасным и удобным
В современном мире есть куча нюансов, которые нужно учесть при старте вашего приложения: конфигурация, деплой, тесты, CI, удобство разработки. Расскажу про Bleeding Edge технологии, основная цель которых сделать ваш проект безопасным и удобным