Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Мощный и быстрый модуль для обработки XML/HTML. Изменения описаны по ссылке https://allmychanges.com/p/python/lxml/#4.1.1. Скачать можно по ссылке: http://pypi.python.org/pypi/lxml/
Набор пользовательских расширений для Django-проектов. Изменения описаны по ссылке https://allmychanges.com/p/python/django-extensions/#1.9.7. Скачать можно по ссылке: https://pypi.python.org/pypi/django-extensions/
В данной статье будет рассказываться о применении библиотеки машинного зрения (openCV) для удаления эффекта радиального искажения (дисторсии) с фото и видео. Данный эффект также известен как эффект рыбьего глаза (fisheye) или distortion. Решение написать данную статью было принято после нескольких дней поиска информации в интернете. Не смотря на то, что есть гайды на английском языке, они не объясняют как правильно установить openCV, чтобы все работало. В статье присутствует готовый код.
Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.
Продолжаем использовать Pillow
Здравствуйте. Это статья об синтаксическом анализе предложений, их представлении. Для разбора предложений будет использоваться пакет NLTK и язык программирования Python (версии 2.7).
Видео со встречи группы PyNSK #17
Докладчик: Данил Руденко
О докладе:
У нашего зоопарка опять проблемы, которые необходимо решить максимально технологично!
На первом докладе мы поговорили о сверточных нейронных сетях, в этот раз рассмотрим такие виды нейронных сетей как автоэнкодеры и GAN’ы( генеративные состязательные сети). Также углубимся немного в Keras, напишем кастомный загрузчик данных и немного посмотрим на Jupyter Notebook.
Слайды:
- часть 1: https://www.slideshare.net/PyNSK/keras-1
- часть 2: https://www.slideshare.net/PyNSK/keras-2