Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Допустим, вы имели какое-то отношение к фондовому рынку раньше. Или, не имея такового, увлеклись горячей (но в последние месяцы уже заметно похолодевшей....) темой криптовалют. Также предположим, что вы пошли еще дальше и решили, что «ручное управление» полетами уже неэффективно и надо бы автоматизировать свои светлые идеи и превратить мартышкин труд в нечто более технологичное. Ровно на этом моменте начинаются вопросы, которые я хотел бы обсудить в статье, а именно: есть ли готовое решение для бэктестинга торговых идей (бесплатное желательно), где взять исторические данные (в идеале бесплатно), а также что с этим всем потом делать, т.е. какие существуют решения для боевого запуска автоматизированных торговых систем, успешно проверенных на бэктесте? Примечание первое и второе: статья написана для Python-based библиотек и систем, как дела с доступностью для других языков судить не могу; в приоритете — зарубежные рынки и/или криптовалюты, относительно применимости к фондовому рынку РФ судить также не берусь.
Аудио-подкаст
Базовая диагностика тормозов
На YouTube много бесплатных обучающих и курсов и туториалов.
В гостях у подкаста Ксения Сухова, датасайентист из ДомКлик. Мы поговорили с Ксенией о карьере женщин в IT и связанных с этим проблемах.
Доклад
Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.
Одним холодным зимним вечером, хотелось согреться в офисе и проверить теорию одного коллеги, что C++ vector мог бы быстрее справиться с задачей, чем CPython list. В компании мы разрабатываем продукты на базе Django и случилось так, что нужно было обработать один большой массив словарей. Коллега предположил, что реализация на C++ была бы гораздо быстрее, а меня не покидало чувство, что Гвидо и сообщество наверное немного круче нас в Си и возможно уже решили и обошли все подводные камни, реализовав всё гораздо быстрее. Для проверки теории, я решил написать небольшой тестовый файл, в котором решил прогнать в цикле вставку 1М словарей одинакового содержания в массив и в vector 100 раз подряд. Результаты хоть и были ожидаемые, но так же и внезапные.