Собрали в одном месте самые важные ссылки
читайте нас в Twitter
При разработке очередного бота для группы в Telegram у меня возникла необходимость испытать его при различных значениях системного времени. Этот бот в конце каждого дня отправляет (или, в зависимости от ряда условий, не отправляет) сообщение в чат и производит манипуляции с некоторыми предыдущими своими сообщениями (или, опять же, не производит).
Менять системное время глобально ой, как не хотелось. Муторно, плюс у меня в ней столько всего понаставлено, не дай Б-г что-то заглючит (вряд ли, но мало ли). Думал запустить VirtualBox, но уж больно лень было ставить «чистую» Убунту, расшаривать папки, и т. д., тем более что этот вариант жрёт, как троглодит серьёзно потребляет машинные ресурсы.
Но буквально недавно я начал ковырять Docker. «У него просто обязан быть механизм контроля системного времени внутри контейнера», — подумал я. Рассмотрим, что же в результате вышло.
Стандартная библиотека Python содержит модуль работы с XML. По ссылке вы найдете статью о нем.
Короткая статья о библиотеки для геренации ODT файлов
Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.
Обычно модели машинного обучения строят в jupyter-ноутбуках, код которых выглядит, мягко говоря, не очень — длинные простыни из лапши выражений и вызовов "на коленке" написанных функций. Понятно, что такой код почти невозможно поддерживать, поэтому каждый проект переписывается чуть ли не с нуля. А о внедрении этого кода в production даже подумать страшно.
Поэтому сегодня представляем на ваш строгий суд превью python'овской библиотеки по работе с датасетами и data science моделями.
Серия моих статей является расширенной версией того, что я хотел увидеть когда только решил познакомиться с нейронными сетями. Он рассчитан в первую очередь на программистов, желающих познакомится с tensorflow и нейронными сетями. Уж не знаю к счастью или к сожалению, но эта тема настолько обширна, что даже мало-мальски информативное описание требует большого объёма текста. Поэтому, я решил разделить повествование на 4 части:
Недавно я писал статью про то, как написать парсер дневника МРКО, а в конце пообещал написать про интеграцию с Телеграм ботом, о чем очень жалею. Сейчас бот уже готов и полностью функционирует. Хочу рассказать вам, что использовал и с какими трудностями столкнулся в этой работе.
Автор рассказывает как использовать идею интерфейсов классов в Python.