Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Задался тут вопросом, как можно обойтись без статического IP для экспериментов в домашних условиях. Наткнулся на вот эту статью.
Если вы хотите развернуть свой вебсервер с доступом извне, а платить провайдеру за статический IP не хотите, то данное решение вполне себе выход, которое можно в дальнейшем подогнать под свои нужды.
Нигде в практике юриста не появляется столь острая необходимость в анализе данных, как в банкротных делах: в таких случаях порой нужно в кратчайшие сроки проанализировать большие объемы информации из банковских выписок, чтобы найти подозрительные транзакции или восстановить уничтоженную/спрятанную/подправленную бухгалтерскую отчетность.
В этой статье я попыталась собрать несколько своих техник тестирования на Python. Не стоит воспринимать их как догму, поскольку, думаю, со временем я обновлю свои практики.
YELP — зарубежная сеть, которая помогает людям находить местные предприятия и услуги, основываясь на отзывах, предпочтениях и рекомендациях. В текущей статей будет проведен определенный ее анализ с использованием платформы Neo4j, относящаяся к графовым СУБД, а также язык python.
Этот заключительный пост посвящен анализу дисперсии. Анализ дисперсии, который в специальной литературе также обозначается как ANOVA от англ. ANalysis Of VAriance, — это ряд статистических методов, используемых для измерения статистической значимости расхождений между группами. Он был разработан чрезвычайно одаренным статистиком Рональдом Фишером, который также популяризировал процедуру проверки статистической значимости в своих исследовательских работах по биологическому тестированию.
Для статистиков и исследователей данных проверка статистической гипотезы представляет собой формальную процедуру. Стандартный подход к проверке статистической гипотезы подразумевает определение области исследования, принятие решения в отношении того, какие переменные необходимы для измерения предмета изучения, и затем выдвижение двух конкурирующих гипотез. Во избежание рассмотрения только тех данных, которые подтверждают наши субъективные оценки, исследователи четко констатируют свою гипотезу заранее. Затем, основываясь на данных, они применяют выборочные статистики с целью подтвердить либо отклонить эту гипотезу.
В статистической науке термины «выборка» и «популяция» имеют особое значение. Популяция, или генеральная совокупность, — это все множество объектов, которые исследователь хочет понять или в отношении которых сделать выводы. Например, во второй половине 19-го века основоположник генетики Грегор Йохан Мендель) записывал наблюдения о растениях гороха. Несмотря на то, что он изучал в лабораторных условиях вполне конкретные сорта растения, его задача состояла в том, чтобы понять базовые механизмы, лежащие в основе наследственности абсолютно всех возможных сортов гороха.
В предыдущей серии постов для начинающих (первый пост тут) из ремикса книги Генри Гарнера «Clojure для исследования данных» (Clojure for Data Science) на языке Python было представлено несколько численных и визуальных подходов, чтобы понять, что из себя представляет нормальное распределение. Мы обсудили несколько описательных статистик, таких как среднее значение и стандартное отклонение, и то, как они могут использоваться для краткого резюмирования больших объемов данных.
Недавно я переехал в Москву в квартиру без письменного стола.
Это было неловким, отягчающим непростую ситуацию обстоятельством: спального места тоже не было. В общем, я позвонил в IKEA и попросил привезти мне и то и другое.
Через пару дней мебель доставили. Я распаковал первую коробку, из нее вывалилась инструкция и у меня опустились руки: в ней наверняка должно быть пятьдесят разных языков, все мелким шрифтом, как книга заклинаний из Гарри Поттера. Но приглянувшись я увидел, что в ней были только рисунки, а именно: два смешных чувачочка показывали, как обращаться с деталями, как их вертеть, собирать и так далее. Уф, счастье! Я подумал о JSON и XML. IKEA молодцы они использовали универсальный язык жестов и картинов, понятный всем на свете.
Автор статьи, перевод которой мы публикуем сегодня, хочет рассказать о том, как, пользуясь Streamlit, создать веб-приложение, которое позволяет пользователям транскрибировать аудиозаписи, выгружая их на специальный сервер. В проекте будет использован API AssemblyAI, позволяющий преобразовывать звукозапись речи в текст. Интерфейс проекта, достаточно строгий, будет украшен анимациями.
Это пилотная статья. Будем благодарны за обратную связь. Если тема вызовет интерес, мы возможно примем решение выложить на GitHub наши исходники (python) и входные data-set’ы.