Собрали в одном месте самые важные ссылки
консультируем про IT, Python
from terrabot import TerraBot from terrabot.events import Events #Create a TerraBot object bot = TerraBot('127.0.0.1') event = bot.get_event_manager() #Connect a function to an event using a decorator @event.on_event(Events.Chat) def chat(event_id, msg): #Do something with the message #In this case, stop the bot if the word "Stop" occurs print(msg) if "stop" in msg: bot.stop() #Start the bot bot.start() #And wait while bot.running: pass
Сегодня я расскажу о не совсем простой концепции быстрого (до часа после нескольких тренировок) развёртывания проекта для работы команды, состоящей как минимум из отдельных фронтенд и бэкенд разработчиков.
Исходные данные у нас такие: начинается разработка проекта, в которой планируется «тонкий бэкенд». Т.е. бэк у нас состоит из закешированных страниц (рендерятся любым шаблонизатором), объёмных моделей с сопутствующей логикой (ORM) и REST API, выполняющего роль контроллера. Фактически, View в такой системе редуцировано и вынесено в JS, благо есть разные реакты, ангуляры и прочие вещи, которые позволяют фронтендщикам считать себя «белыми людьми».
Библиотека позволяет управлять рекламыми компаниями из Python кода
from twitter_ads.client import Client from twitter_ads.campaign import Campaign CONSUMER_KEY = 'your consumer key' CONSUMER_SECRET = 'your consumer secret' ACCESS_TOKEN = 'access token' ACCESS_TOKEN_SECRET = 'access token secret' ACCOUNT_ID = 'account id' # initialize the client client = Client( CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) # load the advertiser account instance account = client.accounts(id=ACCOUNT_ID) # load and update a specific campaign campaign = account.campaigns().next() campaign.name = 'updated campaign name' campaign.paused = True campaign.save() # iterate through campaigns for campaign in account.campaigns(): print(campaign.id)
Менеджеры контекста — это механизм стоящий за ключевым словом with.
Ключевое слово with появилось еще в Python 2.5 (через __future__). Такая конструкция пришла на смену концепту setup..try..except..finally
О Twitter нечего писать, проект уже взрослый и известный. Через Твиттер продают, покупают, разыгрывают призы, консультируют, оказывают поддержку проектов, да даже используют как сервис оповещений. Twitter имеет открытый API, который сегодня и освоим. Мы научимся публиковать пост с изображением через Twitter API
Модуль позволяет имитировать различные уровни кэша. Такой функционал может быть полезен, как для обучения, так и для самостоятельной организации управления памятью (по скорости доступа) в вашей программе
Спешим поделиться видеозаписями выступлений с очередной встречи минского Python-сообщества.
Под катом вы найдете доклады:
Приложение для поддержки тегов в Django. Приложение будет крайне полезно на сайте с новостями, которые необходимо помечать тегами, так же можно легко реализовать сортировку по тегам.. Изменения описаны по ссылке https://allmychanges.com/p/python/django-taggit/#0.17.6. Скачать можно по ссылке: https://pypi.python.org/pypi/django-taggit/
Модуль позволяет настроить напоминания о действиях. Например, "Позвонить Маме" и установить на конкретное время, по достижению этого времени на ваш телефон упадет смс.
В рамках научно-исследовательской работы в вузе я столкнулся с такой задачей, как классификация текстовой информации. По сути, мне нужно было создать алгоритм, который, обрабатывая определенный текстовый документ на входе, вернул бы мне на выходе массив, каждый элемент которого являлся бы мерой принадлежности этого текста (вероятностью или степенью уверенности) к одной из заданных тематик.
В данной статье речь пойдет не о решении задачи классификации конкретно, а о попытке автоматизировать наиболее скучный этап разработки рубрикатора — создание обучающей выборки.
Продолжаем предлагать различные задачи для практики. Кто заинтересуется решением этих задач, просим помогать друг-другу. Но при этом в течении недели не кидать ссылок на полностью готовое решение. А также, чтобы читать код было удобно - публикуйте его на https://gist.github.com/ или какой-то подобный сервис.
Описание задачи:
В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другого алгоритма — градиентного спуска.
Суть происходящего в том, что обратное распространение не вносит в работу сети оптимизацию. Оно перемещает неверную информацию с конца сети на все веса внутри, чтобы другой алгоритм уже смог оптимизировать эти веса так, чтобы они соответствовали нашим данным. Но в принципе, у нас в изобилии присутствуют и другие методы нелинейной оптимизации, которые мы можем использовать с обратным распространением:
Самописная система для проверки работы кода. Библиотека подает на вход функции определенное значение, а результат сравниваем с эталонным.
Модуль shelve из стандартной библиотекой можно описать одной фразой - "pickle + anydbm".
shelve позволяет сериализовать объект (прям как pickle), а потом сохранить его в виде похожем на БД (интерфейс anydbm).
Не редко возникает задача убрать лишние пробелы с начала/конца строки. Например
a = 'Доброе утро, Иван'
message, name = a.split(',')
print(name)
> ' Иван' # (лишний пробел сначала строки)
Не так давно мы начали пару проектов, в которых необходима оптическая система с каналом дальности, и решили для этого использовать Kinect v2. Поскольку проекты реализуются на Python, то для начала нужно было заставить работать Kinect из Python, а затем откалибровать его, так как Kinect из коробки вносит некоторые геометрические искажения в кадры и дает сантиметровые ошибки в определении глубины.
До этого я никогда не имел дела ни с компьютерным зрением, ни с OpenCV, ни с Kinect. Исчерпывающую инструкцию, как со всем этим хозяйством работать, мне найти тоже не удалось, так что в итоге пришлось порядком повозиться. И я решил, что будет не лишним систематизировать полученный опыт в этой статье. Быть может, она окажется небесполезной для какого-нибудь страждущего, а еще нам нужна популярная статья для галочки в отчетности.