Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Технически это называется «неконсистентный». А по-человечески — боль. Делюсь рабочим, хоть и неидеальным, способом её лечения.
LLM умеют многое: генерировать тексты, анализировать документы, писать код. Но на практике их работа часто непредсказуема — сегодня модель даёт точный ответ, а завтра на тех же данных ошибается, пропускает ключевые шаги или придумывает факты. Для решения этой задачи появился подход Schema-Guided Reasoning (SGR).
Django applications must secure sensitive resources by enforcing explicit authorization rather than relying solely on unguessable UUIDs, which expose inherent guessing vulnerabilities.
PSF white paper details archive vulnerabilities undermining Python package integrity and recommends enhancing security in ZIP and tar implementations and reproducible builds.
Что если модель могла бы проектировать саму себя? Подбирать архитектуру, параметры, операторы — без эксперта, без ручного тюнинга и десятков итераций? Эволюционные алгоритмы позволяют это сделать. Я собрал их в рабочую технологию — Thefittest — open-source проект, где эволюция используется для построения и оптимизации моделей машинного обучения.
Мы решили задачу омографов (пока в первой версии, но идей ещё вагон) и теперь удовольствие от публикации наших новых публичных моделей синтеза наконец-то будет полным! Более того, что следом за ними пойдут ещё кое-какие модели, но это будет сюрприз. Итак представляем вам новый v5 релиз наших публичных моделей для синтеза речи!
Сегодня рассмотрим решение одной непростой задачи, как в Django выдавать очень большие объёмы данных, например, выгрузку в CSV или потоковый JSON-формат NDJSON) так, чтобы сервер не ложился от нагрузки, а пользователи быстрее получали первые данные. Разберём, как использовать StreamingHttpResponse и генераторы (в том числе асинхронные) для стриминга больших ответов и поговорим нюансах.
Модуль для управления процессами в ОС. Скачать можно по ссылке: https://pypi.python.org/pypi/psutil/
Фреймворк для работы с AMQP. Скачать можно по ссылке: https://pypi.python.org/pypi/kombu/
В рамках прошлой статьи была настроена IDE и разобраны первые несколько функций CPython и используемые в них структуры. Так, повествование дошло до функции pymain_init из Modules/main.c. Эта же статья будет посвящена разбору части вышеобозначенной функции, а конкретнее — этапу предконфигурации CPython.
Если спросить у питониста: «Чем парсить сайт?», — в большинстве случаев он ответит Selenium или Beautiful Soup. И будет по-своему прав — это два главных направления в мире парсинга на Python.Selenium, со всем своим множеством форков, наследников и схожих по принципу библиотек, — инструмент мощный. В этой статье я расскажу об альтернативе Beautiful Soup — библиотеке Selectolax, воплощающую в себе простоту использования и высокую скорость работы.
В прошлой статье мы превращали безмолвную плату в говорящее на Python устройство. Теперь научим его не просто выполнять команды, а самостоятельно работать по заданным инструкциям (файлами). Мы перейдем к созданию автономных программ, которые будут выполняться на устройстве.
SmileFace — игра, в которой нейросеть угадывает эмоцииМы сделали интерактивный стенд: камера, смайлики и нейросеть, которая пытается распознать, что вы чувствуете. В статье — как это работает, с какими трудностями столкнулись и как запустить игру у себя.
Делали ли вы электронную визу в Индию? А, может, в Южную Корею? Или подавались на лотерею Green Card в США? Если да, то вы точно знаете, что для заявки на все эти документы надо прикрепить фотографию определённого размера с целым набором требований...
Manuscript OCR — открытая нейросеть для чтения рукописей XIX века. Мы обучили свою OCR-модель распознавать дореформенную кириллицу, нестандартные почерки и сложные сканы. Всё — на собственных данных, с нуля. В статье — как мы это сделали и ссылки на репозиторий с кодом.
У нас был большой продакшен-сервис с ~10M MAU, где Redis использовался как основное хранилище состояния пользователей. Все данные лежали в нём в виде JSON-сериализованных Pydantic-моделей. Это выглядело удобно, пока не стало больно.