Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Как все знают, GIL (Global Interpreter Lock) не позволяет нескольким потокам CPython выполнять CPU-bound задачи параллельно. Глобальная блокировка интерпретатора предоставляет каждому потоку лишь небольшой интервал времени для работы. При этом планирование работы потоков (какому именно потоку из ожидающих предоставить разрешение на выполнение) осуществляется планировщиком операционной системы. Интерпретатор не является полноценным планировщиком работы потоков, он делегирует эту функцию операционной системе. GIL использует мьютексы ОС для блокировки работы потоков так, чтобы в один момент времени мог выполняться только один поток из нескольких.
В этой статье я хочу поделиться опытом создания полностью локального AI-ассистента на основе Microsoft Phi-3-mini — компактной, но мощной модели, способной анализировать данные из CSV, JSON и TXT файлов. Весь проект представляет собой набор Python-скриптов с открытым исходным кодом, которые автоматизируют установку и предоставляют интуитивно понятный чат-интерфейс.
Paradox: что если заменить финансовые рынки математической моделью? В статье я смоделирую экономику блокчейн-протокола, где цена токена вычисляется по формуле, и покажу, как разные стратегии поведения влияют на доходность участников. Полный разбор механики и результатов.
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
Я занимаюсь разработкой и поддержанием инструментов тестирования, которыми пользуется весь банк. Сегодня я хотел бы поделиться опытом сбора технических метрик pytest и их анализа в целях выявления узких мест и ускорения выполнения тестов.
PySpark handles large datasets but its syntax has a steep learning curve. PySpark SQL solves this by enabling familiar SQL-style DataFrame operations. This walkthrough teaches you everything from loading data to window functions and pandas UDFs.
asyncio changes are often overlooked, in the latest 3.14 release there are 3 new asyncio features and changes.
MSK144 — цифровой протокол, разработанный Джо Тейлором (K1JT) и его командой в 2016 году для проведения связей через метеорное рассеивание.В предыдущей части были рассмотрены общие характеристики протокола, а также алгоритмы, формирующие сигнал. В этой части статьи рассматриваются механизмы детектирования и декодирования сигналов в протоколе MSK144. Статья может быть интересна радиолюбителям и людям, интересующимся темой цифровой обработки сигналов.
AI генерирует тесты, но 95% из них не работают — галлюцинирует классы, путает поля, использует несуществующие API. Знакомо? Мы в отделе RAPID прошли через это на проекте с биржевым протоколом TWIME. Делимся итеративным подходом: как за 3 шага превратить хаос из 307 тестов в 109 работающих. С конкретными промптами, метриками и выводами.
Представьте опытного трейдера: наверняка он не говорит котировками и не рассказывает про индикаторы — он просто говорит «сильный тренд», «пробой уровня» или «ложный отскок». Для него график это язык: свечи, объёмы и уровни складываются в понятные фразы о том, что сейчас происходит на рынке. Именно от этой человеческой интуиции я и отталкивался в своём эксперименте.
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
Модуль для работы с многомерными массивами. Скачать можно по ссылке: https://pypi.python.org/pypi/numpy/
Мы детально разобрали природу проблемы и изучили арсенал методов. Теперь перейдем к самому важному — практическим результатам. Я протестировал каждый подход на реальной задаче создания инфографики "Agentic AI Explained" и готов показать, что действительно работает.
Статический анализатор Python-кода. Скачать можно по ссылке: https://pypi.python.org/pypi/pylint/
There’s a proposal, PEP 810 – Explicit lazy imports for Python to natively support lazy importing starting in Python 3.15. However, it has not been accepted yet, and even if it is accepted, 3.15 is a year away. What do we do now?
Audio
Рассматриваются встроенные в Python возможности декларативного программирования и их развитие в библиотеках SQLAlchemy, NumPy, Pandas. Показывается применение трех видов декларативного программирования с помощью библиотеки DecPy: аналогов SQL, QBE и Prolog. В том числе приводятся рекурсивные запросы.
Представьте инженера по добыче на центральном объекте в Permian Basin, которому до рассвета нужно успеть десятки дел. Одна скважина работает ниже нормы. Для другой нужно принять решение о капитальном ремонте. Данные разбросаны по электронным таблицам, SAP, PDF‑документам и полевым логам. Знакомая ситуация?