Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
In data science you’ll sometimes hear a debate between R and Python. Cosima says ‘why not choose both?’ She outlines a data pipeline that uses the best tool for each job.
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
5 лет назад я задался целью создать сильный искусственный интеллект (СИИ).Думаю, стоит начать с того, как я создал бота для Телеграма с цепями Маркова.
Здесь я не буду детально объяснять базовый алгоритм CUPED аб-тестирования: про это уже достаточно материала в сети. Основное внимание уделим рассмотрению метода через призму регрессий. Цель статьи - познакомить читателя с теоремой, безумно полезной для понимания работы регрессий, а главное - продемонстрировать, как с помощью этой теоремы проводить CUPED тесты не в три последовательных шага (как в базовом алгоритме), а с помощью одной регрессии.
Дело в том, что для своего пет-проекта мне нужна была рисовалка на минималке, но при этом, должна иметь базовый функционал, от нее не требуется быть полноценным графическим редактором.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
Представьте: вы только что написали модель машинного обучения и вам нужно протестировать её работу в конкретном сценарии. Или вы собираетесь опубликовать научную статью о пользовательском решении в области Data Science, но имеющиеся датасеты нельзя использовать из-за юридических ограничений.
Подчёркивание _ — это символ, который используются в именах в коде на Питоне. Он влияет на то, как код работает и как код читают. Знания о том, куда поместить подчёркивание, помогает писать код.
А теперь о том, что происходило в последнее время на других ресурсах.
Как хорошо вы знаете python? Вы только начали делать неуверенные шаги в изучении или уже беглого осмотра кода хватит, чтобы найти ошибки? Для совсем новичков и для настоящих профессионалов-питонистов! Для любой аудитории найдётся своя книга! Мы собрали 8 вспомогательных книг для тех, кто решил связать свою жизнь с python. Разнообразные книги для вдумчивого знакомства.
Обработка больших текстовых файлов — распространенная задача в различных областях, таких как анализ данных, машинное обучение, веб-скрапинг и другие. Например, при работе с логами веб-сервера, которые могут достигать гигабайтов в размере, или при обработке больших наборов данных, таких как базы данных транзакций. В таких сценариях, когда файлы слишком велики для загрузки в память целиком, эффективное управление памятью становится критически важным.
Сегодня обсудим, как проверять много гипотез в одном эксперименте. Разберёмся, почему растут вероятности ошибок. Познакомимся с метриками множественного тестирования и поправками, которые позволяют их контролировать. Узнаем, как оценить необходимый размер групп и повысить чувствительность.
Рассмотрим самоорганизующиеся системы в природе, например, стаи птиц или рыб. Представим такую систему как совокупность частиц, где каждая особь – это отдельная частица.