Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Примерно месяц назад проект CPython смерджил новую стратегию реализации интерпретатора байт-кода. Первоначальные результаты были очень впечатляющими, продемонстрировав среднее повышение производительности на 10-15% в широком спектре бенчмарков на различных платформах.
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
В этом примере используются измерения акселерометра MPU 6050 и машинное обучение (ML) для распознавания трех жестов рукой с помощью ESP32. Данные из сенсора распознаются на микроконтроллере и результат выводится в консоль в виде названия жеста и вероятности результата. Модель ML использует TensorFlow и Keras и обучается на выборке данных, представляющей три различных жеста: "circle" (окружность), "cross" (пересечение) и "pad" (поступательное движение).
Я научил буфер обмена думать за меня, и теперь всё вокруг стало быстрее. Копировать и вставлять — это для новичков. А что если выделенный текст мгновенно станет грамотным, переведётся на нужный язык или расшифрует картинку?
В докладе я расскажу об особенностях и проблемах задачи поиска аномалий, разберу несколько наиболее популярных методов.
Рассмотрим основы работы спутниковой связи, включая ключевые принципы передачи данных через спутники. Поговорим о том, как Python может быть использован для автоматизации процессов в космической сфере.
Это первая статья из цикла, посвященного разработке телеграм-бота с MiniApp для случайных чатов. В этой части мы сосредоточимся на создании бэкенда, используя современные технологии: FastAPI для разработки API, Redis для хранения данных в реальном времени и Centrifugo для обеспечения мгновенного взаимодействия между пользователями. Сегодня мы подробно разберем архитектуру проекта, настройку серверов и реализацию логики бота.
How can you simplify the management of your Python projects with one file? What are the advantages of using LazyFrames in Polars? Christopher Trudeau is back on the show this week, bringing another batch of PyCoder's Weekly articles and projects.
Сегодня разбираем реализацию Gibbs Sampling на Python. Это один из методов Монте‑Карло по цепям Маркова (MCMC), который решает такую задачу:«У нас есть сложное многомерное распределение, но мы не можем из него напрямую сэмплировать. Однако, если у нас есть условные распределения, то мы можем брать новые точки, обновляя поочередно каждую координату.»
У меня, как у практикующего юриста в консалтинге и человека, горящего желанием научиться новым навыкам, появилась идея (которая в ходе реализации изменила свой вид) создать программу для анализа эмоций и тональности документов.
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
В этой статье мы коротко пройдемся по основным вариантам реализации акторной модели на Python.
А теперь о том, что происходило в последнее время на других ресурсах.
Как часто ваши простенькие прототипы или предметные скрипты превращаются в полномасштабные приложения? Простота естественного разрастания кода не лишена и обратной стороны — такой код становится трудно обслуживать. Количественное размножение словарей в качестве основных структур данных чётко сигнализирует о наличии технического долга. К счастью, сегодня Python предоставляет для простых словарей много адекватных альтернатив.
Telescope - это opensource web-приложение для удобной работы с логами, хранящимися в ClickHouse.
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
Модуль для работы с многомерными массивами. Скачать можно по ссылке: https://pypi.python.org/pypi/numpy/