Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
В итоге получился экспериментальный проект «ХрюХрюКар» — сервис для борьбы с неправильной парковкой, работающий под лозунгом «Хорошие ребята говорят 'Bla-Bla' и не ставят машину на зелёной зоне».
В этой статье мы расскажем, как выбирали проект, на решение каких задач нацелен «ХрюХрюКар», какие технологии мы использовали, какие трудности возникали и что получилось в итоге.
Интерфейс для вызова C-кода. Скачать можно по ссылке: https://pypi.python.org/pypi/cffi/
Фреймворк для работы с AMQP. Скачать можно по ссылке: https://pypi.python.org/pypi/kombu/
В первой части рассмотрим паттерны проектирования Repository и Unit of Work. С их помощью мы работаем через интерфейсы. Паттерны помогают в разделении кода на слои: основная логика приложения представляется внутренними слоями, а используемые технологии - внешними.
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Сегодня я решил создать чисто практическую статью, в которой мы с нуля и максимально быстро разработаем полноценный веб-сервис с фронтендом и бэкендом. После этого мы выполним деплой этого приложения, чтобы любой пользователь мог им воспользоваться.
Учебный процесс меня вдохновлял, и казалось, что впереди меня ожидает очередь из работодателей, стремящихся нанять востребованного специалиста. Но, как оказалось, никто не спешит брать на работу junior-специалистов
Я объединил все эти фичи в реальный проект с открытым исходным кодом, чтобы у вас сложилась целостная картина. Мы с вами создадим UX/UI на Figma, напишем фронтенд на HTML, CSS, SASS, Bootstrap и JavaScript, создадим ER-диаграмму в MySQL Workbench, напишем бекэнд на Flask, создадим регистрацию через социальные сети OAuth 2.0 в один клик, используем брокер сообщений и асинхронную очередь Celery для отправки писем на электронную почту, сделаем WYSIWYG-редактор, реализуем полнотекстовый поиск Elasticsearch, закешируем Redis, покроем тестами pytest и запустим в Docker-контейнерах, поговорим о многопроцессности для WSGI-шлюза Gunicorn.
A color field for Django models with a nice color-picker in the admin.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
Сразу оговорюсь, что в статье речь пойдёт преимущественно о теоретической стороне проектирования батарей, нежели о практических рекомендациях по исправлению их технических проблем — жаль разочаровывать тех, кого больше интересует последнее.
Эта статья рассчитана на людей, которые уже знакомы с Python, хотя бы на уровне junior+. Я объясню, какие есть отличия и особенности в многопоточности, асинхронности и мультипроцессорности в Python, где и когда они используются. Как говорится в пословице: «Всё познаётся в сравнении», именно в таком стиле я подготовил примеры. Кроме этого, буду специально делать ошибки и рассматривать неправильные подходы, чтобы можно было сразу разобраться, убедиться и запомнить, почему так делать нельзя и какой другой подход в этом случае нужно использовать.
В двух предыдущих статьях здесь и тут мы рассказывали историю создания одного из компонентов платформы экспериментов в компании. В тех статьях говорилось о множестве изменений и улучшений, которые претерпел Python-код, чтобы работать достаточно быстро. Но как бы качественно не был написан код, все усилия могут сойти на нет, если он будет запущен в неправильной среде. В этой статье продолжим рассказ об оптимизациях и улучшениях, но в этот раз речь будет идти не столько об особенностях предметной области и решаемой бизнес-задачи, сколько о том, как мы архитектурно организовали работу сервиса для получения минимального времени ответа.
А теперь о том, что происходило в последнее время на других ресурсах.
Хочу поделиться примером‑инструкцией как получить инсайты из геоданных без регистрации, смс (только open‑source и бесплатные инструменты: OSM, python, Портал открытых данных Правительства Москвы, DataLens). Как сделать так, чтобы дашборд не "умер" от количества точек и тяжелых полигонов, работал сравнительно быстро и давал пользователю представление общей картины.