Собрали в одном месте самые важные ссылки
читайте авторский блог
Python модуль для создания заглушек (mock-объект) при тестировании. Изменения описаны по ссылке https://allmychanges.com/p/python/mock/#2.0.0. Скачать можно по ссылке: http://pypi.python.org/pypi/mock/
Пишем Telegram бота через простейшее веб-приложение на Django.
Модуль позволяет реализовать цепочки http запросов, например, достать данные из одного источника, а затем эти данные послать в другой сервис
Замыкания - простой и мощный инструмент для сокрытия переменных в локальном Scope между вызовами функций. Статья описывает способ пересоздания замыканий.
Если вы занимаетесь мета-программированием, то сталкиваетесь с необходимостью работы с типами, а не объектами.
В статье вы найдете необходимую базу для понимания типов в Python
Библиотека для Python, которая позволяет вам писать асинхронные сетевые приложение использую синхронный API. Изменения описаны по ссылке https://allmychanges.com/p/python/gevent/#1.1.1. Скачать можно по ссылке: http://pypi.python.org/pypi/gevent/
Фреймворк для простого создания интерфейсов командной строки.. Изменения описаны по ссылке https://allmychanges.com/p/python/click/#6.5. Скачать можно по ссылке: https://pypi.python.org/pypi/click/
Стек рассматриваемых технологий: Postgresql 9.3, Python 2.7 с установленным модулем «psycopg2».
Проблема
Как часто в вашей практике приходилось сталкиваться с задачей обработки таблиц большого объема (более 10 млн. записей)? Думаю вы согласитесь, что данная задача является довольно ресурсоемкой как в плане времени обработки, так и задействованных ресурсов системы. Сегодня я постараюсь показать альтернативный способ решения задачи.
Привет! Я воплощаю интересные идеи на python и рассказываю о том, что из этого вышло. В прошлый раз я пробовал найти аномалии на карте цен недвижимости. Просто так. На этот раз идея была построить систему, которая смогла бы сама решать очень популярную ныне Google Recaptcha 2.0, основываясь на некоторых алгоритмах и большой базе обучающих примеров.
Google Recaptcha 2.0 представляет собой набор изображений (9 или 16 квадратных картинок под одной инструкцией), среди которых пользователю, для подтверждения своей разумности, нужно выбрать все изображения одной категории. Речь пойдет НЕ о построении системы машинного обучения — распознавать мы будем именно капчи!
Внешний интерфейс для компьютеров с Linux, который позволяет взаимодействовать с системой посредством символьных дисплеев и кнопок.
Статья описывает проблемы, которые возникают при моделированнии. Много примеров и картинок
Плейлист с докладами с конференции PyData Amsterdam 2016